Perform analysis of variance when the experimental units are spatially correlated. There are two methods to deal with spatial dependence: Spatial autoregressive models (see Rossoni, D. F., & Lima, R. R. (2019) <doi:10.28951/rbb.v37i2.388>) and geostatistics (see Pontes, J. M., & Oliveira, M. S. D. (2004) <doi:10.1590/S1413-70542004000100018>). For both methods, there are three multicomparison procedure available: Tukey, multivariate T, and Scott-Knott.
Version: 0.99.4 Depends: R (≥ 2.10), stats, utils, graphics, geoR, shiny Imports: MASS, Matrix, ScottKnott, car, gtools, multcomp, multcompView, mvtnorm, DT, shinyBS, xtable, shinythemes, rmarkdown, knitr, spdep, ape, spatialreg, shinycssloaders Published: 2024-03-21 DOI: 10.32614/CRAN.package.spANOVA Author: Castro L. R. [aut, cre, cph], Renato R. R. [aut, ths], Rossoni D. F. [aut], Nogueira C.H. [aut] Maintainer: Castro L. R. <lucasroberto.castro at gmail.com> License: GPL-3 NeedsCompilation: no Materials: README NEWS CRAN checks: spANOVA results Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=spANOVA to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4