A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster-windows below:

Creating a cluster using Windows Server node pools | Google Kubernetes Engine (GKE)

In this page, you learn how to create a Google Kubernetes Engine (GKE) cluster with node pools running Microsoft Windows Server. With this cluster, you can use Windows Server containers. Microsoft Hyper-V containers are not currently supported. Similar to Linux containers, Windows Server containers provide process and namespace isolation.

A Windows Server node requires more resources than a typical Linux node. Windows Server nodes need the extra resources to run the Windows OS and for the Windows Server components that cannot run in containers. Since Windows Server nodes require more resources, your allocatable resources are lower than they would be with Linux nodes.

Creating a cluster using Windows Server node pools

In this section, you create a cluster that uses a Windows Server container.

To create this cluster you need to complete the following tasks:

  1. Choose your Windows Server node image.
  2. Update and configure gcloud.
  3. Create a cluster and node pools.
  4. Get kubectl credentials.
  5. Wait for cluster initialization.
Note: The gcloud commands for these tasks assume you are using a Linux machine. Set up IAM service accounts for GKE

GKE uses IAM service accounts that are attached to your nodes to run system tasks like logging and monitoring. At a minimum, these node service accounts must have the Kubernetes Engine Default Node Service Account (roles/container.defaultNodeServiceAccount) role on your project. By default, GKE uses the Compute Engine default service account, which is automatically created in your project, as the node service account.

Best practice: Instead of using the Compute Engine default service account, create a custom service account for your nodes to use and give it only the permissions that GKE needs to run system tasks. For more information, see Use a least privileged service account.

To grant the roles/container.defaultNodeServiceAccount role to the Compute Engine default service account, complete the following steps:

console
  1. Go to the Welcome page:

    Go to Welcome

  2. In the Project number field, click content_copy Copy to clipboard.
  3. Go to the IAM page:

    Go to IAM

  4. Click person_add Grant access.
  5. In the New principals field, specify the following value:
    PROJECT_NUMBER-compute@developer.gserviceaccount.com
    Replace PROJECT_NUMBER with the project number that you copied.
  6. In the Select a role menu, select the Kubernetes Engine Default Node Service Account role.
  7. Click Save.
gcloud
  1. Find your Google Cloud project number:
    gcloud projects describe PROJECT_ID \
        --format="value(projectNumber)"

    Replace PROJECT_ID with your project ID.

    The output is similar to the following:

    12345678901
    
  2. Grant the roles/container.defaultNodeServiceAccount role to the Compute Engine default service account:
    gcloud projects add-iam-policy-binding PROJECT_ID \
        --member="serviceAccount:PROJECT_NUMBER-compute@developer.gserviceaccount.com" \
        --role="roles/container.defaultNodeServiceAccount"

    Replace PROJECT_NUMBER with the project number from the previous step.

Choose your Windows Server node image Warning: Windows Server Semi-Annual Channel (SAC) images aren't supported after August 9, 2022 because Microsoft is removing support for the SAC. For potential impact and migration instructions, refer to Windows Server Semi-Annual Channel end of servicing.

To run on GKE, Windows Server container node images need to be built on Windows Server version 2019 (LTSC), Windows Server version 20H2 (SAC), or Windows Server version 2022 (LTSC). A single cluster can have multiple Windows Server node pools using different Windows Server versions, but each individual node pool can only use one Windows Server version.

Consider the following when choosing your node image:

Update and configure gcloud

Before you start, make sure that you have performed the following tasks:

Create a cluster and node pools

To run Windows Server containers, your cluster must have at least one Windows and one Linux node pool. You cannot create a cluster using only a Windows Server node pool. The Linux node pool is required to run critical cluster add- ons.

Because of its importance, we recommend turning on autoscaling to ensure your Linux node pool has sufficient capacity to run cluster add-ons.

Note: Clusters using Windows Server node pools do not support all Kubernetes and GKE features. See the limitations section for more information. gcloud

Create a cluster with the following fields:

gcloud container clusters create CLUSTER_NAME \
    --location=CONTROL_PLANE_LOCATION \
    --enable-ip-alias \
    --num-nodes=NUMBER_OF_NODES \
    --cluster-version=VERSION_NUMBER \
    --release-channel CHANNEL

Replace the following:

We strongly recommend that you specify a minimally-privileged IAM service account that your nodes can use instead of the Compute Engine default service account. To learn how to create a minimally-privileged service account, see Use a least privilege service account.

To specify a custom service account in the gcloud CLI, add the following flag to your command:

--service-account=SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com

Replace SERVICE_ACCOUNT_NAME with the name of your minimally-privileged service account.

Create the Windows Server node pool with the following fields:

gcloud container node-pools create NODE_POOL_NAME \
    --cluster=CLUSTER_NAME \
    --location=CONTROL_PLANE_LOCATION \
    --image-type=IMAGE_NAME \
    --no-enable-autoupgrade \
    --machine-type=MACHINE_TYPE_NAME \
    --windows-os-version=WINDOWS_OS_VERSION

Replace the following:

Note: The Windows Server 2022 node image and Windows Server 2019 node image share the same image type WINDOWS_LTSC_CONTAINERD. The default LTSC image that GKE uses to create Windows_LTSC_Containerd node pools through the Google Cloud console or CLI is ltsc2019. Creation of Windows Server 2022 node images are only supported for GKE version 1.25.3-gke.800 or later. If you want your clusters to consume Windows Server 2022 node pools, make sure to upgrade your clusters to the supported GKE versions.

The following example shows how you can create a Windows Server 2022 node pool:

gcloud container node-pools create node_pool_name \
    --cluster=cluster_name \
    --location=us-central1 \
    --image-type=WINDOWS_LTSC_CONTAINERD \
    --windows-os-version=ltsc2022

The following example shows how you can update an existing Windows node pool to use Windows Server 2022 OS image:

gcloud container node-pools create node_pool_name \
    --cluster=cluster_name \
    --location=us-central1 \
    --windows-os-version=ltsc2022
Console
  1. In the Google Cloud console, go to the Create a Kubernetes cluster page.

    Go to Create a Kubernetes cluster

  2. In the Cluster basics section, complete the following:
    1. Enter the Name for your cluster.
    2. For the Location type, select the desired region or zone for your cluster.
    3. Under Control plane Version, select a Release channel or choose to specify a Static version. The static version must be 1.16.8-gke.9 or higher.
  3. From the navigation pane, under Node Pools, click default-pool to create your Linux node pool. When configuring this node pool, you should provide sufficient compute resources to run cluster add-ons. You must also have available resource quota for the nodes and their resources (such as firewall routes).
  4. At the top of the page, click add_box Add Node Pool to create your Windows Server node pool.
  5. In the Node pool details section, complete the following:
    1. Enter a Name for the node pool.
    2. For static version nodes, choose the Node version.
    3. Enter the Number of nodes to create in the node pool.
  6. From the navigation pane, under Node Pools, click Nodes.

    1. From the Image type drop-down list, select one of the following node images:

      • Windows Long Term Servicing Channel with Docker
      • Windows Long Term Servicing Channel with containerd
      • Windows Semi-Annual Channel with Docker
      • Windows Semi-Annual Channel with containerd
      Warning: In GKE version 1.24 and later, Docker-based node image types are not supported. In GKE version 1.23, you also cannot create new node pools with Docker node image types. You must migrate to a containerd node image type. To learn more about this change, see About the Docker node image deprecation.

      For more information, see the Choose your Windows node image section.

    2. Choose the default Machine configuration to use for the instances. n1-standard-2 is the minimum recommended size as Windows Server nodes require additional resources. Machine types f1-micro and g1-small are not supported. Each machine type is billed differently. For more information, refer to the machine type price sheet.

  7. From the navigation pane, select the name of your Windows Server node pool. This returns you to the Node pool details page.

    1. Under Automation, clear the Enable node auto-upgrade checkbox. Review the Upgrading Windows Server node pools section before enabling auto-upgrade.
  8. From the navigation pane, under Cluster, select Networking.

    1. Under Advanced networking options, ensure Enable VPC-native traffic routing (uses alias IP) is selected. Alias IP is required for Windows Server nodes. To read more about its benefits, see Understanding native container routing with Alias IPs.
  9. Click Create.

Terraform

To create a GKE Standard cluster and a Windows Server node pool using Terraform, refer to the following example:

This example uses Windows Server LTSC with containerd. This is the image type for both Windows Server 2022 and Windows Server 2019 OS image. For more information about node images, see Choose your Windows node image.

To learn more about using Terraform, see Terraform support for GKE.

After you create a Windows Server node pool, the cluster goes into a RECONCILE state for several minutes as the control plane is updated.

Get kubectl credentials

Use the get-credentials command to enable kubectl to work with the cluster you created.

gcloud container clusters get-credentials CLUSTER_NAME \
    --location CONTROL_PLANE_LOCATION

For more information on the get-credentials command, see the SDK get-credentials documentation.

Wait for cluster initialization

Before using the cluster, wait for several seconds until windows.config.common-webhooks.networking.gke.io is created. This webhook adds scheduling tolerations to Pods created with the kubernetes.io/os: windows node selector to ensure they are allowed to run on Windows Server nodes. It also validates the Pod to ensure that it only uses features supported on Windows.

To ensure the webhook is created, run the following command:

kubectl get mutatingwebhookconfigurations

The output should show the webhook running:

NAME                                              CREATED AT
windows.config.common-webhooks.networking.gke.io  2019-12-12T16:55:47Z

Now that you have a cluster with two node pools (one Linux and one Windows), you can deploy a Windows application.

Mapping GKE and Windows versions

Preview

This feature is subject to the "Pre-GA Offerings Terms" in the General Service Terms section of the Service Specific Terms. Pre-GA features are available "as is" and might have limited support. For more information, see the launch stage descriptions.

Microsoft releases new SAC versions approximately every six months and new LTSC versions every two to three years. These new versions are typically available in new GKE minor versions. Within a GKE minor version the LTSC and SAC versions usually remain fixed.

To see the version mapping between GKE versions and Windows Server versions, use the gcloud beta container get-server-config command:

gcloud beta container get-server-config

The version mapping is returned in the windowsVersionMaps field of the response. To filter the response to see the version mapping for specific GKE versions in your cluster, perform the following steps in a Linux shell or in Cloud Shell.

  1. Set the following variables:

    CLUSTER_NAME=CLUSTER_NAME \
    NODE_POOL_NAME=NODE_POOL_NAME \
    CONTROL_PLANE_LOCATION=CONTROL_PLANE_LOCATION
    

    Replace the following:

  2. Obtain the node pool version and store it in the NODE_POOL_VERSION variable:

    NODE_POOL_VERSION=`gcloud container node-pools describe $NODE_POOL_NAME \
    --cluster=$CLUSTER_NAME \
    --location=$CONTROL_PLANE_LOCATION \
    --format="value(version)"`
    
  3. Obtain the Windows Server versions for NODE_POOL_VERSION:

    gcloud beta container get-server-config \
        --location=$CONTROL_PLANE_LOCATION \
        --format="yaml(windowsVersionMaps.\"$NODE_POOL_VERSION\")"
    

    The output is similar to the following:

    windowsVersionMaps:
      1.18.6-gke.6601:
        windowsVersions:
        - imageType: WINDOWS_SAC
          osVersion: 10.0.18363.1198
          supportEndDate:
            day: 10
            month: 5
            year: 2022
        - imageType: WINDOWS_LTSC
          osVersion: 10.0.17763.1577
          supportEndDate:
            day: 9
            month: 1
            year: 2024
    
  4. Obtain the Windows Server version for the WINDOWS_SAC image type:

    gcloud beta container get-server-config \
      --flatten=windowsVersionMaps.\"$NODE_POOL_VERSION\".windowsVersions \
      --filter="windowsVersionMaps.\"$NODE_POOL_VERSION\".windowsVersions.imageType=WINDOWS_SAC" \
      --format="value(windowsVersionMaps.\"$NODE_POOL_VERSION\".windowsVersions.osVersion)"
    

    The output is similar to the following:

    10.0.18363.1198
    
Important: Before upgrading your node pools to 1.16.8-gke.8 or later, review Microsoft's documentation about the February 2020 Windows Server container incompatibility issue and build your container images with base Windows images that include Windows Updates from March 2020. Upgrading Windows Server node pools

The Windows Server container version compatibility requirements mean that your container images might need to be rebuilt to match the Windows Server version for a new GKE version before upgrading your node pools.

To ensure that your container images remain compatible with your nodes, we recommend that you check the version mapping and build your Windows Server container images as multi-arch images that can target multiple Windows Server versions. You can then update your container deployments to target the multi-arch images that will work on both the current and the next GKE version before manually invoking a GKE node pool upgrade. Manual node pool upgrades must be performed regularly because nodes cannot be more than two minor versions behind the control plane version.

We recommend that you subscribe to upgrade notifications using Pub/Sub to proactively receive updates about new GKE versions and the Windows OS versions they use.

We recommend enabling node auto-upgrades only if you continuously build multi-arch Windows Server container images that target the latest Windows Server versions, especially if you are using Windows Server SAC as the node image type. Node auto-upgrades are less likely to cause problems with the Windows Server LTSC node image type but there is still a risk of encountering version incompatibility issues.

Windows Updates

Windows Updates are disabled for Windows Server nodes. Automatic updates can cause node restarts at unpredictable times, and any Windows Updates installed after a node starts would be lost when the node is recreated by GKE. GKE makes Windows Updates available by periodically updating the Windows Server node images used in new GKE releases. There can be a delay between when Windows Updates are released by Microsoft and when they are available in GKE. When critical security updates are released, GKE updates the Windows Server node images as quickly as possible.

Control how Windows Pods and Services communicate

You can control how Windows Pods and Services communicate using network policies.

You can have a Windows Server container on clusters that have network policy enabled in GKE versions 1.22.2 and later. This feature is available for clusters that use the WINDOWS_LTSC or WINDOWS_LTSC_CONTAINERD node image types.

If your control planes or nodes are running earlier versions, you can migrate your node pools to a version that supports network policy by upgrading your node pools and your control plane to GKE version 1.22.2 or later. This option is only available if you created your cluster with the --enable-dataplane-v2 flag.

After you enable network policy, all previously configured policies, including policies that did not work on Windows Server containers before you enabled the feature, become active.

Some clusters cannot be used with Windows Server containers on clusters with network policy enabled. See the limitations section for more details.

Viewing and querying logs

Logging is enabled automatically in GKE clusters. You can view the logs of the containers and the logs from other services on the Windows Server nodes using Kubernetes Engine monitoring.

The following is an example of a filter to get the container log:

resource.type="k8s_container"
resource.labels.cluster_name="your_cluster_name"
resource.labels.namespace_name="your_namespace_id"
resource.labels.container_name="your_container_name"
resource.labels.Pod_name="your_Pod_name"
Accessing a Windows Server node using Remote Desktop Protocol (RDP)

You can connect to a Windows Server node in your cluster using RDP. For instructions on how to connect, see Connecting to Windows instances in the Compute Engine documentation.

Building multi-arch images

You can build the multi-arch images manually or use a Cloud Build builder. For instructions, see Building Windows multi-arch images.

Using gMSA

The following steps show you how to use a Group Managed Service Account (gMSA) with your Windows Server node pools.

  1. Configure Windows Server nodes in your cluster to automatically join your AD domain. For instructions, see Configure Windows Server nodes to automatically join an Active Directory domain.

  2. Create and grant a gMSA access to the security group automatically created by the domain join service. This step needs to be done in a machine with administrative access to your AD domain.

    $instanceGroupUri = gcloud container node-pools describe NODE_POOL_NAME --cluster CLUSTER_NAME --format="value(instanceGroupUrls)"
    $securityGroupName = ([System.Uri]$instanceGroupUri).Segments[-1]
    $securityGroup = dsquery group -name $securityGroupName
    $gmsaName = GMSA_NAME
    $dnsHostName = DNS_HOST_NAME
    
    New-ADServiceAccount -Name $gmsaName -DNSHostName $dnsHostName -PrincipalsAllowedToRetrieveManagedPassword $securityGroup
    
    Get-ADServiceAccount $gmsaName
    Test-ADServiceAccount $gmsaName
    

    Replace the following:

  3. Configure your gMSA by following the instructions in the Configure GMSA for Windows Pods and containers tutorial.

Deleting Windows Server node pools

Delete a Windows Server node pool by using gcloud or the Google Cloud console.

gcloud
gcloud container node-pools delete NODE_POOL_NAME \
    --cluster=CLUSTER_NAME
    --location=CONTROL_PLANE_LOCATION
Console

To delete a Windows Server node pool using the Google Cloud console, perform the following steps:

  1. Go to the Google Kubernetes Engine page in the Google Cloud console.

    Go to Google Kubernetes Engine

  2. Beside the cluster you want to edit, click more_vert Actions, then click edit Edit.

  3. Select the Nodes tab.

  4. Under the Node Pools section, click delete Delete next to the node pool you want to delete.

  5. When prompted to confirm, click Delete again.

Limitations

There are some Kubernetes features that are not yet supported for Windows Server containers. In addition, some features are Linux-specific and do not work for Windows. For the complete list of supported and unsupported Kubernetes features, see the Kubernetes documentation.

In addition to the unsupported Kubernetes features, there are some GKE features that are not supported.

For GKE clusters, the following features are not supported with Windows Server node pools:

Local External Traffic Policy on Windows node pool is only supported with GKE version v1.23.4-gke.400 or later.

Other Google Cloud products that you want to use with GKE clusters might not support Windows Server node pools. For specific limitations, refer to the documentation of that product.

Troubleshooting

See the Kubernetes documentation for general guidance on debugging Pods and Services.

Containerd node issues

For known issues using a Containerd node image, see Known issues.

Windows Pods fail to start

A version mismatch between the Windows Server container and the Windows node that is trying to run the container can result in your Windows Pods failing to start.

If the version for your Windows node pool is 1.16.8-gke.8 or later, review Microsoft's documentation for the February 2020 Windows Server container incompatibility issue and build your container images with base Windows images that include Windows Updates from March 2020. Container images built on earlier base Windows images might fail to run on these Windows nodes and can also cause the node to fail with status NotReady.

Image pull errors

Windows Server container images, and the individual layers they are composed of, can be quite large. Their size can cause Kubelet to timeout and fail when downloading and extracting the container layers.

You might have encountered this problem if you see the "Failed to pull image" or "Image pull context cancelled" error messages or an ErrImagePull status for your Pods.

If the pull image occurs frequently, you should use node pools with a higher CPU specification. Container extraction is executed in parallel across cores, so machine types with more cores reduces the overall pull time.

Try the following options to successfully pull your Windows Server containers:

Image family reached end of life

When creating a node pool with a Windows image, you receive an error similar to the following:

WINDOWS_SAC image family for 1.18.20-gke.501 has reached end of life, newer versions are still available.

To resolve this error, choose a Windows image that is available and supported. You can find the support end date for GKE Windows node images by using the gcloud container get-server-config command as described in the Mapping GKE and Windows versions section.

Timeout during node pool creation

Node pool creation can time out if you are creating a large number of nodes (for example, 500) and it's the first node pool in the cluster using a Windows Server image.

To resolve this issue, reduce the number of nodes you are creating. You can increase the number of nodes later.

Windows nodes become NotReady with error: "PLEG is not healthy"

This is a known Kubernetes issue that happens when multiple Pods are started very rapidly on a single Windows node. To recover from this situation, restart the Windows Server node. A recommended workaround to avoid this issue is to limit the rate at which Windows Pods are created to one Pod every 30 seconds.

Inconsistent TerminationGracePeriod

The Windows system timeout for the container might differ from the grace period you configure. This difference can cause Windows to force-terminate the container before the end of the grace period passed to the runtime.

You can modify the Windows timeout by editing container-local registry keys at image-build time. If you modify the Windows timeout, you might also need to adjust TerminationGracePeriodSeconds to match.

Network connectivity problems

If you experience network connectivity problems from your Windows Server containers, it might be because Windows Server container networking often assumes a network MTU of 1500, which is incompatible with Google Cloud's MTU of 1460.

Check that both the MTU of the network interface in the container and the network interfaces of the Windows Server node itself are set to the same value (that is, 1460 or less). For information on how to set the MTU, see known issues for Windows containers.

Node startup issues

If nodes fail to start in the cluster or fail to join the cluster successfully, review the diagnostic information provided in the node's serial port output.

Run the following command to see the serial port output:

gcloud compute instances get-serial-port-output NODE_NAME --zone=COMPUTE_ZONE

Replace the following:

Intermittently unreachable Services in Windows nodes with cluster running 1.24 or earlier

When starting Windows nodes in Kubernetes clusters with a high number of Host Network Service Load Balancer rules, there is a delay in processing the rules. Services are intermittently unreachable during the delay, which lasts around 30 seconds per rule, and the total delay can be significant if there are enough rules. To learn more, see the original issue in GitHub.

For GKE clusters running version 1.24 or earlier, with any Windows nodes that had an event that restarted kube-proxy—for example, node startup, node upgrade, manual restart—any Services being reached by a Pod running on that node will be unreachable until all rules are synced by the component.

For GKE clusters running version 1.25 or later, this behavior is substantially improved. For details on this improvement, see the pull request in GitHub. If you are experiencing this issue, we recommend upgrading your cluster's control plane to 1.25 or later.

What's next

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4