A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://cloud.google.com/bigquery/docs/reference/standard-sql/time-series-functions below:

Time series functions | BigQuery

Skip to main content Time series functions

Stay organized with collections Save and categorize content based on your preferences.

GoogleSQL for BigQuery supports the following time series functions.

Function list Name Summary APPENDS Returns all rows appended to a table for a given time range. CHANGES Returns all rows that have changed in a table for a given time range. DATE_BUCKET Gets the lower bound of the date bucket that contains a date. DATETIME_BUCKET Gets the lower bound of the datetime bucket that contains a datetime. GAP_FILL Finds and fills gaps in a time series. TIMESTAMP_BUCKET Gets the lower bound of the timestamp bucket that contains a timestamp. APPENDS

Preview

This product or feature is subject to the "Pre-GA Offerings Terms" in the General Service Terms section of the Service Specific Terms. Pre-GA products and features are available "as is" and might have limited support. For more information, see the launch stage descriptions.

Note: To provide feedback or request support for this feature, send an email to bq-change-history-feedback@google.com.
APPENDS(
  TABLE table,
  start_timestamp DEFAULT NULL,
  end_timestamp DEFAULT NULL)

Description

The APPENDS function returns all rows appended to a table for a given time range.

The following operations add rows to the APPENDS change history:

Definitions

Details

Records of inserted rows persist even if that data is later deleted. Deletions aren't reflected in the APPENDS function. If a table is copied, calling the APPENDS function on the copied table returns every row as inserted at the time of table creation. If a row is modified due to an UPDATE operation, there's no effect.

Output

The APPENDS function returns a table with the following columns:

Limitations

Example

This example shows the change history returned by the APPENDS function as various changes are made to a table called Produce. First, create the table:

CREATE TABLE mydataset.Produce (product STRING, inventory INT64) AS (
  SELECT 'apples' AS product, 10 AS inventory);

Next, insert two rows into the table:

INSERT INTO mydataset.Produce
VALUES
  ('bananas', 20),
  ('carrots', 30);

To view the full change history of appends, use NULL values to get the full history within the time travel window:

SELECT
  product,
  inventory,
  _CHANGE_TYPE AS change_type,
  _CHANGE_TIMESTAMP AS change_time
FROM
  APPENDS(TABLE mydataset.Produce, NULL, NULL);

The output is similar to the following:

+---------+-----------+-------------+--------------------------------+
| product | inventory | change_type | change_time                    |
+---------+-----------+-------------+--------------------------------+
| apples  | 10        | INSERT      | 2022-04-15 20:06:00.488000 UTC |
| bananas | 20        | INSERT      | 2022-04-15 20:06:08.490000 UTC |
| carrots | 30        | INSERT      | 2022-04-15 20:06:08.490000 UTC |
+---------+-----------+-------------+--------------------------------+

Next, add a column, insert a new row of values, update the inventory, and delete the bananas row:

ALTER TABLE mydataset.Produce ADD COLUMN color STRING;
INSERT INTO mydataset.Produce VALUES ('grapes', 40, 'purple');
UPDATE mydataset.Produce SET inventory = inventory + 5 WHERE TRUE;
DELETE mydataset.Produce WHERE product = 'bananas';

View the new table:

SELECT * FROM mydataset.Produce;

The output is similar to the following:

+---------+-----------+--------+
| product | inventory | color  |
+---------+-----------+--------+
| apples  | 15        | NULL   |
| carrots | 35        | NULL   |
| grapes  | 45        | purple |
+---------+-----------+--------+

View the full change history of appends:

SELECT
  product,
  inventory,
  color,
  _CHANGE_TYPE AS change_type,
  _CHANGE_TIMESTAMP AS change_time
FROM
  APPENDS(TABLE mydataset.Produce, NULL, NULL);

The output is similar to the following:

+---------+-----------+--------+-------------+--------------------------------+
| product | inventory | color  | change_type | change_time                    |
+---------+-----------+--------+-------------+--------------------------------+
| apples  | 10        | NULL   | INSERT      | 2022-04-15 20:06:00.488000 UTC |
| bananas | 20        | NULL   | INSERT      | 2022-04-15 20:06:08.490000 UTC |
| carrots | 30        | NULL   | INSERT      | 2022-04-15 20:06:08.490000 UTC |
| grapes  | 40        | purple | INSERT      | 2022-04-15 20:07:45.751000 UTC |
+---------+-----------+--------+-------------+--------------------------------+

The inventory column displays the values that were set when the rows were originally inserted into to the table. It doesn't show the changes from the UPDATE statement. The row with information on bananas is still present because the APPENDS function only captures additions to tables, not deletions.

CHANGES

Preview

This product or feature is subject to the "Pre-GA Offerings Terms" in the General Service Terms section of the Service Specific Terms. Pre-GA products and features are available "as is" and might have limited support. For more information, see the launch stage descriptions.

Note: To provide feedback or request support for this feature, send an email to bq-change-history-feedback@google.com.
CHANGES(
  TABLE table,
  start_timestamp DEFAULT NULL,
  end_timestamp)

Description

The CHANGES function returns all rows that have changed in a table for a given time range. To use the CHANGES function on a table, you must set the table's enable_change_history option to TRUE.

The following operations add rows to the CHANGES change history:

Definitions

Details

If a row is inserted, a record of the new row with an INSERT change type is produced.

If a row is deleted, a record of the deleted row with a DELETE change type is produced.

If a row is updated, a record of the old row with a DELETE change type and a record of the new row with an UPDATE change type are produced.

Output

The CHANGES function returns a table with the following columns:

Limitations

Example

This example shows the change history returned by the CHANGES function as various changes are made to a table called Produce. First, create the table:

CREATE TABLE mydataset.Produce (
  product STRING,
  inventory INT64)
OPTIONS(enable_change_history=true);

Insert two rows into the table:

INSERT INTO mydataset.Produce
VALUES
  ('bananas', 20),
  ('carrots', 30);

Delete one row from the table:

DELETE mydataset.Produce
WHERE product = 'bananas';

Update one row of the table:

UPDATE mydataset.Produce
SET inventory = inventory - 10
WHERE product = 'carrots';

Wait for 10 minutes and view the full change history of the changes:

SELECT
  product,
  inventory,
  _CHANGE_TYPE AS change_type,
  _CHANGE_TIMESTAMP AS change_time
FROM
  CHANGES(TABLE mydataset.Produce, NULL, TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 601 SECOND))
ORDER BY change_time, product;

The output is similar to the following:

+---------+-----------+-------------+---------------------+
| product | inventory | change_type |     change_time     |
+---------+-----------+-------------+---------------------+
| bananas |        20 | INSERT      | 2024-01-09 17:13:58 |
| carrots |        30 | INSERT      | 2024-01-09 17:13:58 |
| bananas |        20 | DELETE      | 2024-01-09 17:14:30 |
| carrots |        30 | DELETE      | 2024-01-09 17:15:24 |
| carrots |        20 | UPDATE      | 2024-01-09 17:15:24 |
+---------+-----------+-------------+---------------------+

Enabling change history for an existing table

To set the enable_change_history option to TRUE for an existing table, use the ALTER TABLE SET OPTIONS DDL statement. The following example updates the change history option for my_table to TRUE:

ALTER TABLE `my_dataset.my_table`
SET OPTIONS (enable_change_history = TRUE);
DATE_BUCKET
DATE_BUCKET(date_in_bucket, bucket_width)
DATE_BUCKET(date_in_bucket, bucket_width, bucket_origin_date)

Description

Gets the lower bound of the date bucket that contains a date.

Definitions

Return type

DATE

Examples

In the following example, the origin is omitted and the default origin, 1950-01-01 is used. All buckets expand in both directions from the origin, and the size of each bucket is two days. The lower bound of the bucket in which my_date belongs is returned.

WITH some_dates AS (
  SELECT DATE '1949-12-29' AS my_date UNION ALL
  SELECT DATE '1949-12-30' UNION ALL
  SELECT DATE '1949-12-31' UNION ALL
  SELECT DATE '1950-01-01' UNION ALL
  SELECT DATE '1950-01-02' UNION ALL
  SELECT DATE '1950-01-03'
)
SELECT DATE_BUCKET(my_date, INTERVAL 2 DAY) AS bucket_lower_bound
FROM some_dates;

/*--------------------+
 | bucket_lower_bound |
 +--------------------+
 | 1949-12-28         |
 | 1949-12-30         |
 | 1949-12-30         |
 | 1950-01-01         |
 | 1950-01-01         |
 | 1950-01-03         |
 +--------------------*/

-- Some date buckets that originate from 1950-01-01:
-- + Bucket: ...
-- + Bucket: [1949-12-28, 1949-12-30)
-- + Bucket: [1949-12-30, 1950-01-01)
-- + Origin: [1950-01-01]
-- + Bucket: [1950-01-01, 1950-01-03)
-- + Bucket: [1950-01-03, 1950-01-05)
-- + Bucket: ...

In the following example, the origin has been changed to 2000-12-24, and all buckets expand in both directions from this point. The size of each bucket is seven days. The lower bound of the bucket in which my_date belongs is returned:

WITH some_dates AS (
  SELECT DATE '2000-12-20' AS my_date UNION ALL
  SELECT DATE '2000-12-21' UNION ALL
  SELECT DATE '2000-12-22' UNION ALL
  SELECT DATE '2000-12-23' UNION ALL
  SELECT DATE '2000-12-24' UNION ALL
  SELECT DATE '2000-12-25'
)
SELECT DATE_BUCKET(
  my_date,
  INTERVAL 7 DAY,
  DATE '2000-12-24') AS bucket_lower_bound
FROM some_dates;

/*--------------------+
 | bucket_lower_bound |
 +--------------------+
 | 2000-12-17         |
 | 2000-12-17         |
 | 2000-12-17         |
 | 2000-12-17         |
 | 2000-12-24         |
 | 2000-12-24         |
 +--------------------*/

-- Some date buckets that originate from 2000-12-24:
-- + Bucket: ...
-- + Bucket: [2000-12-10, 2000-12-17)
-- + Bucket: [2000-12-17, 2000-12-24)
-- + Origin: [2000-12-24]
-- + Bucket: [2000-12-24, 2000-12-31)
-- + Bucket: [2000-12-31, 2000-01-07)
-- + Bucket: ...
DATETIME_BUCKET
DATETIME_BUCKET(datetime_in_bucket, bucket_width)
DATETIME_BUCKET(datetime_in_bucket, bucket_width, bucket_origin_datetime)

Description

Gets the lower bound of the datetime bucket that contains a datetime.

Definitions

Return type

DATETIME

Examples

In the following example, the origin is omitted and the default origin, 1950-01-01 00:00:00 is used. All buckets expand in both directions from the origin, and the size of each bucket is 12 hours. The lower bound of the bucket in which my_datetime belongs is returned:

WITH some_datetimes AS (
  SELECT DATETIME '1949-12-30 13:00:00' AS my_datetime UNION ALL
  SELECT DATETIME '1949-12-31 00:00:00' UNION ALL
  SELECT DATETIME '1949-12-31 13:00:00' UNION ALL
  SELECT DATETIME '1950-01-01 00:00:00' UNION ALL
  SELECT DATETIME '1950-01-01 13:00:00' UNION ALL
  SELECT DATETIME '1950-01-02 00:00:00'
)
SELECT DATETIME_BUCKET(my_datetime, INTERVAL 12 HOUR) AS bucket_lower_bound
FROM some_datetimes;

/*---------------------+
 | bucket_lower_bound  |
 +---------------------+
 | 1949-12-30T12:00:00 |
 | 1949-12-31T00:00:00 |
 | 1949-12-31T12:00:00 |
 | 1950-01-01T00:00:00 |
 | 1950-01-01T12:00:00 |
 | 1950-01-02T00:00:00 |
 +---------------------*/

-- Some datetime buckets that originate from 1950-01-01 00:00:00:
-- + Bucket: ...
-- + Bucket: [1949-12-30 00:00:00, 1949-12-30 12:00:00)
-- + Bucket: [1949-12-30 12:00:00, 1950-01-01 00:00:00)
-- + Origin: [1950-01-01 00:00:00]
-- + Bucket: [1950-01-01 00:00:00, 1950-01-01 12:00:00)
-- + Bucket: [1950-01-01 12:00:00, 1950-02-00 00:00:00)
-- + Bucket: ...

In the following example, the origin has been changed to 2000-12-24 12:00:00, and all buckets expand in both directions from this point. The size of each bucket is seven days. The lower bound of the bucket in which my_datetime belongs is returned:

WITH some_datetimes AS (
  SELECT DATETIME '2000-12-20 00:00:00' AS my_datetime UNION ALL
  SELECT DATETIME '2000-12-21 00:00:00' UNION ALL
  SELECT DATETIME '2000-12-22 00:00:00' UNION ALL
  SELECT DATETIME '2000-12-23 00:00:00' UNION ALL
  SELECT DATETIME '2000-12-24 00:00:00' UNION ALL
  SELECT DATETIME '2000-12-25 00:00:00'
)
SELECT DATETIME_BUCKET(
  my_datetime,
  INTERVAL 7 DAY,
  DATETIME '2000-12-22 12:00:00') AS bucket_lower_bound
FROM some_datetimes;

/*--------------------+
 | bucket_lower_bound |
 +--------------------+
 | 2000-12-15T12:00:00 |
 | 2000-12-15T12:00:00 |
 | 2000-12-15T12:00:00 |
 | 2000-12-22T12:00:00 |
 | 2000-12-22T12:00:00 |
 | 2000-12-22T12:00:00 |
 +--------------------*/

-- Some datetime buckets that originate from 2000-12-22 12:00:00:
-- + Bucket: ...
-- + Bucket: [2000-12-08 12:00:00, 2000-12-15 12:00:00)
-- + Bucket: [2000-12-15 12:00:00, 2000-12-22 12:00:00)
-- + Origin: [2000-12-22 12:00:00]
-- + Bucket: [2000-12-22 12:00:00, 2000-12-29 12:00:00)
-- + Bucket: [2000-12-29 12:00:00, 2000-01-05 12:00:00)
-- + Bucket: ...
GAP_FILL
GAP_FILL (
  TABLE time_series_table,
  time_series_column,
  bucket_width,
  [, partitioning_columns => value ]
  [, value_columns => value ]
  [, origin => value ]
  [, ignore_null_values => { TRUE | FALSE } ]
)
GAP_FILL (
  (time_series_subquery),
  time_series_column,
  bucket_width,
  [, partitioning_columns => values ]
  [, value_columns => value ]
  [, origin => value ]
  [, ignore_null_values => { TRUE | FALSE } ]
)

Description

Finds and fills gaps in a time series.

Definitions

Details

Sometimes the fixed time intervals produced by time bucket functions have gaps, either due to irregular sampling intervals or an event that caused data loss for some time period. This can cause irregularities in reporting. For example, a plot with irregular intervals might have visible discontinuity. You can use the GAP_FILL function to employ various gap-filling methods to fill in those missing data points.

time_series_column and origin must be of the same data type.

Return type

TABLE

Examples

In the following query, the locf gap-filling method is applied to gaps:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:34:01', 74, 'INACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:00', 77, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:37:00', 78, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:38:01', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'locf')
  ]
)
ORDER BY time;

/*---------------------+--------+
 | time                | signal |
 +---------------------+--------+
 | 2023-11-01T09:35:00 | 74     |
 | 2023-11-01T09:36:00 | 77     |
 | 2023-11-01T09:37:00 | 78     |
 | 2023-11-01T09:38:00 | 78     |
 +---------------------+--------*/

In the following query, the linear gap-filling method is applied to gaps:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:34:01', 74, 'INACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:00', 77, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:37:00', 78, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:38:01', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'linear')
  ]
)
ORDER BY time;

/*---------------------+--------+
 | time                | signal |
 +---------------------+--------+
 | 2023-11-01T09:35:00 | 75     |
 | 2023-11-01T09:36:00 | 77     |
 | 2023-11-01T09:37:00 | 78     |
 | 2023-11-01T09:38:00 | 80     |
 +---------------------+--------*/

In the following query, the null gap-filling method is applied to gaps:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:34:01', 74, 'INACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:00', 77, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:37:00', 78, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:38:01', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'null')
  ]
)
ORDER BY time;

/*---------------------+--------+
 | time                | signal |
 +---------------------+--------+
 | 2023-11-01T09:35:00 | NULL   |
 | 2023-11-01T09:36:00 | 77     |
 | 2023-11-01T09:37:00 | 78     |
 | 2023-11-01T09:38:00 | NULL   |
 +---------------------+--------*/

In the following query, NULL values in the input data are ignored by default:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:34:01', 74, 'INACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:00', 77, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:37:00', NULL, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:38:01', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'linear')
  ]
)
ORDER BY time;

/*---------------------+--------+
 | time                | signal |
 +---------------------+--------+
 | 2023-11-01T09:35:00 | 75     |
 | 2023-11-01T09:36:00 | 77     |
 | 2023-11-01T09:37:00 | 78     |
 | 2023-11-01T09:38:00 | 80     |
 +---------------------+--------*/

In the following query, NULL values in the input data aren't ignored, using the ignore_null_values argument:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:34:01', 74, 'INACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:00', 77, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:37:00', NULL, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:38:01', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'linear')
  ],
  ignore_null_values => FALSE
)
ORDER BY time;

/*---------------------+--------+
 | time                | signal |
 +---------------------+--------+
 | 2023-11-01T09:35:00 | 75     |
 | 2023-11-01T09:36:00 | 77     |
 | 2023-11-01T09:37:00 | NULL   |
 | 2023-11-01T09:38:00 | NULL   |
 +---------------------+--------*/

In the following query, when the value_columns argument isn't passed in, the null gap-filling method is used on all columns:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:34:01', 74, 'INACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:00', 77, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:37:00', 79, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:38:01', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE
)
ORDER BY time;

/*---------------------+-----------+--------+----------+
 | time                | device_id | signal | state    |
 +---------------------+-----------+--------+----------+
 | 2023-11-01T09:35:00 | NULL      | NULL   | NULL     |
 | 2023-11-01T09:36:00 | 2         | 77     | ACTIVE   |
 | 2023-11-01T09:37:00 | 3         | 79     | ACTIVE   |
 | 2023-11-01T09:38:00 | NULL      | NULL   | NULL     |
 +---------------------+-----------+--------+----------*/

In the following query, rows (buckets) are added for gaps that are found:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:35:39', 74, 'INACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:37:39', 77, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:38:00', 77, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:40:00', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'locf')
  ]
)
ORDER BY time;

/*---------------------+--------+
 | time                | signal |
 +---------------------+--------+
 | 2023-11-01T09:36:00 | 74     |
 | 2023-11-01T09:37:00 | 74     |
 | 2023-11-01T09:38:00 | 74     |
 | 2023-11-01T09:39:00 | 77     |
 | 2023-11-01T09:40:00 | 77     |
 +---------------------+--------*/

In the following query, data is condensed when it fits in the same bucket and has the same values:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:35:39', 74, 'INACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:60', 77, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:37:00', 77, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:37:20', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'locf')
  ]
)
ORDER BY time;

/*---------------------+--------+
 | time                | signal |
 +---------------------+--------+
 | 2023-11-01T09:36:00 | 74     |
 | 2023-11-01T09:37:00 | 77     |
 +---------------------+--------*/

In the following query, gap filling is applied to partitions:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(2, DATETIME '2023-11-01 09:35:07', 87, 'ACTIVE'),
    STRUCT(1, DATETIME '2023-11-01 09:35:26', 82, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:35:39', 74, 'INACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:07', 88, 'ACTIVE'),
    STRUCT(1, DATETIME '2023-11-01 09:36:26', 82, 'ACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:37:07', 88, 'ACTIVE'),
    STRUCT(1, DATETIME '2023-11-01 09:37:28', 80, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:37:39', 77, 'ACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:38:07', 86, 'ACTIVE'),
    STRUCT(1, DATETIME '2023-11-01 09:38:26', 81, 'ACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:38:39', 77, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  partitioning_columns => ['device_id'],
  value_columns => [
    ('signal', 'locf')
  ]
)
ORDER BY device_id;

/*---------------------+-----------+--------+
 | time                | device_id | signal |
 +---------------------+-----------+--------+
 | 2023-11-01T09:36:00 | 1         | 82     |
 | 2023-11-01T09:37:00 | 1         | 82     |
 | 2023-11-01T09:38:00 | 1         | 80     |
 | 2023-11-01T09:36:00 | 2         | 87     |
 | 2023-11-01T09:37:00 | 2         | 88     |
 | 2023-11-01T09:38:00 | 2         | 88     |
 | 2023-11-01T09:36:00 | 3         | 74     |
 | 2023-11-01T09:37:00 | 3         | 74     |
 | 2023-11-01T09:38:00 | 3         | 77     |
 +---------------------+-----------+--------*/

In the following query, gap filling is applied to multiple columns, and each column uses a different gap-filling method:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:34:01', 74, 'ACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:00', 77, 'INACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:38:00', 78, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:39:01', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'linear'),
    ('state', 'locf')
  ]
)
ORDER BY time;

/*---------------------+--------+----------+
 | time                | signal | state    |
 +---------------------+--------+----------+
 | 2023-11-01T09:35:00 | 75     | ACTIVE   |
 | 2023-11-01T09:36:00 | 77     | INACTIVE |
 | 2023-11-01T09:37:00 | 78     | INACTIVE |
 | 2023-11-01T09:38:00 | 78     | ACTIVE   |
 | 2023-11-01T09:39:00 | 80     | ACTIVE   |
 +---------------------+--------+----------*/

In the following query, the point of origin is changed in the gap-filling results to a custom origin, using the origin argument:

CREATE TEMP TABLE device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
    STRUCT(1, DATETIME '2023-11-01 09:34:01', 74, 'ACTIVE'),
    STRUCT(2, DATETIME '2023-11-01 09:36:00', 77, 'INACTIVE'),
    STRUCT(3, DATETIME '2023-11-01 09:38:00', 78, 'ACTIVE'),
    STRUCT(4, DATETIME '2023-11-01 09:39:01', 80, 'ACTIVE')
]);

SELECT *
FROM GAP_FILL(
  TABLE device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'null')
  ],
  origin => DATETIME '2023-11-01 09:30:01'
)
ORDER BY time;

/*---------------------+--------+
 | time                | signal |
 +---------------------+--------+
 | 2023-11-01T09:34:01 | 74     |
 | 2023-11-01T09:35:01 | NULL   |
 | 2023-11-01T09:36:01 | NULL   |
 | 2023-11-01T09:37:01 | NULL   |
 | 2023-11-01T09:38:01 | NULL   |
 | 2023-11-01T09:39:01 | 80     |
 +---------------------+--------*/

In the following query, a subquery is passed into the function instead of a table:

SELECT *
FROM GAP_FILL(
  (
    SELECT * FROM UNNEST(
    ARRAY<STRUCT<device_id INT64, time DATETIME, signal INT64, state STRING>>[
      STRUCT(1, DATETIME '2023-11-01 09:34:01', 74, 'INACTIVE'),
      STRUCT(2, DATETIME '2023-11-01 09:36:00', 77, 'ACTIVE'),
      STRUCT(3, DATETIME '2023-11-01 09:37:00', 78, 'ACTIVE'),
      STRUCT(4, DATETIME '2023-11-01 09:38:01', 80, 'ACTIVE')
    ])
  ),
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  value_columns => [
    ('signal', 'linear')
  ]
)
ORDER BY time;

/*---------------------+--------+
 | time                | signal |
 +---------------------+--------+
 | 2023-11-01T09:35:00 | 75     |
 | 2023-11-01T09:36:00 | 77     |
 | 2023-11-01T09:37:00 | 78     |
 | 2023-11-01T09:38:00 | 80     |
 +---------------------+--------*/
TIMESTAMP_BUCKET
TIMESTAMP_BUCKET(timestamp_in_bucket, bucket_width)
TIMESTAMP_BUCKET(timestamp_in_bucket, bucket_width, bucket_origin_timestamp)

Description

Gets the lower bound of the timestamp bucket that contains a timestamp.

Definitions

Return type

TIMESTAMP

Examples

In the following example, the origin is omitted and the default origin, 1950-01-01 00:00:00 is used. All buckets expand in both directions from the origin, and the size of each bucket is 12 hours. The default time zone, UTC, is included in the results. The lower bound of the bucket in which my_timestamp belongs is returned:

WITH some_timestamps AS (
  SELECT TIMESTAMP '1949-12-30 13:00:00.00' AS my_timestamp UNION ALL
  SELECT TIMESTAMP '1949-12-31 00:00:00.00' UNION ALL
  SELECT TIMESTAMP '1949-12-31 13:00:00.00' UNION ALL
  SELECT TIMESTAMP '1950-01-01 00:00:00.00' UNION ALL
  SELECT TIMESTAMP '1950-01-01 13:00:00.00' UNION ALL
  SELECT TIMESTAMP '1950-01-02 00:00:00.00'
)
SELECT TIMESTAMP_BUCKET(my_timestamp, INTERVAL 12 HOUR) AS bucket_lower_bound
FROM some_timestamps;

-- Display of results may differ, depending upon the environment and
-- time zone where this query was executed.
 /*------------------------+
 | bucket_lower_bound      |
 +-------------------------+
 | 1949-12-30 12:00:00 UTC |
 | 1949-12-31 00:00:00 UTC |
 | 1949-12-31 12:00:00 UTC |
 | 1950-01-01 00:00:00 UTC |
 | 1950-01-01 12:00:00 UTC |
 | 1950-01-02 00:00:00 UTC |
 +-------------------------*/

-- Some timestamp buckets that originate from 1950-01-01 00:00:00:
-- + Bucket: ...
-- + Bucket: [1949-12-30 00:00:00.00 UTC, 1949-12-30 12:00:00.00 UTC)
-- + Bucket: [1949-12-30 12:00:00.00 UTC, 1950-01-01 00:00:00.00 UTC)
-- + Origin: [1950-01-01 00:00:00.00 UTC]
-- + Bucket: [1950-01-01 00:00:00.00 UTC, 1950-01-01 12:00:00.00 UTC)
-- + Bucket: [1950-01-01 12:00:00.00 UTC, 1950-02-00 00:00:00.00 UTC)
-- + Bucket: ...

In the following example, the origin has been changed to 2000-12-24 12:00:00, and all buckets expand in both directions from this point. The size of each bucket is seven days. The default time zone, UTC, is included in the results. The lower bound of the bucket in which my_timestamp belongs is returned:

WITH some_timestamps AS (
  SELECT TIMESTAMP '2000-12-20 00:00:00.00' AS my_timestamp UNION ALL
  SELECT TIMESTAMP '2000-12-21 00:00:00.00' UNION ALL
  SELECT TIMESTAMP '2000-12-22 00:00:00.00' UNION ALL
  SELECT TIMESTAMP '2000-12-23 00:00:00.00' UNION ALL
  SELECT TIMESTAMP '2000-12-24 00:00:00.00' UNION ALL
  SELECT TIMESTAMP '2000-12-25 00:00:00.00'
)
SELECT TIMESTAMP_BUCKET(
  my_timestamp,
  INTERVAL 7 DAY,
  TIMESTAMP '2000-12-22 12:00:00.00') AS bucket_lower_bound
FROM some_timestamps;

-- Display of results may differ, depending upon the environment and
-- time zone where this query was executed.
 /*------------------------+
 | bucket_lower_bound      |
 +-------------------------+
 | 2000-12-15 12:00:00 UTC |
 | 2000-12-15 12:00:00 UTC |
 | 2000-12-15 12:00:00 UTC |
 | 2000-12-22 12:00:00 UTC |
 | 2000-12-22 12:00:00 UTC |
 | 2000-12-22 12:00:00 UTC |
 +-------------------------*/

-- Some timestamp buckets that originate from 2000-12-22 12:00:00:
-- + Bucket: ...
-- + Bucket: [2000-12-08 12:00:00.00 UTC, 2000-12-15 12:00:00.00 UTC)
-- + Bucket: [2000-12-15 12:00:00.00 UTC, 2000-12-22 12:00:00.00 UTC)
-- + Origin: [2000-12-22 12:00:00.00 UTC]
-- + Bucket: [2000-12-22 12:00:00.00 UTC, 2000-12-29 12:00:00.00 UTC)
-- + Bucket: [2000-12-29 12:00:00.00 UTC, 2000-01-05 12:00:00.00 UTC)
-- + Bucket: ...

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025-08-15 UTC.

[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-15 UTC."],[[["GoogleSQL for BigQuery offers several time series functions, including `APPENDS`, `CHANGES`, `DATE_BUCKET`, `DATETIME_BUCKET`, `GAP_FILL`, and `TIMESTAMP_BUCKET`."],["The `APPENDS` function shows all rows that have been added to a table within a given timeframe, which is particularly useful for tracking data ingestion, but doesn't reflect data deletions or updates."],["The `CHANGES` function tracks all modifications to a table within a specified period, including insertions, updates, and deletions, but requires enabling the `enable_change_history` option for the target table."],["The `DATE_BUCKET`, `DATETIME_BUCKET`, and `TIMESTAMP_BUCKET` functions are used to find the lower bound of the date, datetime, or timestamp bucket that contains a specific date, datetime, or timestamp, respectively, allowing you to organize and analyze data in predefined time intervals."],["The `GAP_FILL` function identifies and fills missing data points in a time series, supporting methods like linear interpolation, carrying the last observed value forward, or filling with `NULL` values, and can also handle partitions and custom time origins."]]],[]]


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4