A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://ceholden.github.io/open-geo-tutorial/python/chapter_5_classification.html below:

chapter_5_classification

# Visualize

# First setup a 5-4-3 composite
def color_stretch(image, index, minmax=(0, 10000)):
    colors = image[:, :, index].astype(np.float64)

    max_val = minmax[1]
    min_val = minmax[0]

    # Enforce maximum and minimum values
    colors[colors[:, :, :] > max_val] = max_val
    colors[colors[:, :, :] < min_val] = min_val

    for b in range(colors.shape[2]):
        colors[:, :, b] = colors[:, :, b] * 1 / (max_val - min_val)
        
    return colors
    
img543 = color_stretch(img, [4, 3, 2], (0, 8000))

# See https://github.com/matplotlib/matplotlib/issues/844/
n = class_prediction.max()
# Next setup a colormap for our map
colors = dict((
    (0, (0, 0, 0, 255)),  # Nodata
    (1, (0, 150, 0, 255)),  # Forest
    (2, (0, 0, 255, 255)),  # Water
    (3, (0, 255, 0, 255)),  # Herbaceous
    (4, (160, 82, 45, 255)),  # Barren
    (5, (255, 0, 0, 255))  # Urban
))
# Put 0 - 255 as float 0 - 1
for k in colors:
    v = colors[k]
    _v = [_v / 255.0 for _v in v]
    colors[k] = _v
    
index_colors = [colors[key] if key in colors else 
                (255, 255, 255, 0) for key in range(1, n + 1)]
cmap = plt.matplotlib.colors.ListedColormap(index_colors, 'Classification', n)

# Now show the classmap next to the image
plt.subplot(121)
plt.imshow(img543)

plt.subplot(122)
plt.imshow(class_prediction, cmap=cmap, interpolation='none')

plt.show()

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4