A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://arrayfire.org/arrayfire-python/arrayfire.vision.html below:

arrayfire.vision module — ArrayFire Python documentation

arrayfire.vision module

Computer vision functions (FAST, ORB, etc)

arrayfire.vision.dog(image, radius1, radius2)[source]

Difference of gaussians.

Parameters
imageaf.Array

A 2D array specifying an image.

radius1scalar.

The radius of first gaussian kernel.

radius2scalar.

The radius of second gaussian kernel.

Returns
outaf.Array

A multi dimensional array containing the difference of gaussians.

arrayfire.vision.fast(image, threshold=20.0, arc_length=9, non_max=True, feature_ratio=0.05, edge=3)[source]

FAST feature detector.

Parameters
imageaf.Array

A 2D array representing an image.

thresholdscalar. optional. default: 20.0.

FAST threshold for which a pixel of the circle around a central pixel is consdered.

arc_lengthscalar. optional. default: 9

The minimum length of arc length to be considered. Max length should be 16.

non_maxBoolean. optional. default: True

A boolean flag specifying if non max suppression has to be performed.

feature_ratioscalar. optional. default: 0.05 (5%)

Specifies the maximum ratio of features to pixels in the image.

edgescalar. optional. default: 3.

Specifies the number of edge rows and columns to be ignored.

Returns
featuresaf.Features()

Contains the location and score. Orientation and size are not computed.

arrayfire.vision.gloh(image, num_layers=3, contrast_threshold=0.04, edge_threshold=10.0, initial_sigma=1.6, double_input=True, intensity_scale=0.00390625, feature_ratio=0.05)[source]

GLOH feature detector and descriptor.

Parameters
imageaf.Array

A 2D array representing an image

num_layersoptional: integer. Default: 3

Number of layers per octave. The number of octaves is calculated internally.

contrast_thresholdoptional: float. Default: 0.04

Threshold used to filter out features that have low contrast.

edge_thresholdoptional: float. Default: 10.0

Threshold used to filter out features that are too edge-like.

initial_sigmaoptional: float. Default: 1.6

The sigma value used to filter the input image at the first octave.

double_inputoptional: bool. Default: True

If True, the input image will be scaled to double the size for the first octave.

intensity_scaleoptional: float. Default: 1.0/255

The inverse of the difference between maximum and minimum intensity values.

feature_ratiooptional: float. Default: 0.05

Specifies the maximum number of features to detect as a ratio of image pixels.

Returns
(features, descriptor)tuple of (af.Features(), af.Array)
  • descriptor is an af.Array of size N x 272

arrayfire.vision.hamming_matcher(query, database, dim=0, num_nearest=1)[source]

Hamming distance matcher.

Parameters
queryaf.Array

A query feature descriptor

databaseaf.Array

A multi dimensional array containing the feature descriptor database.

dimscalar. optional. default: 0.

Specifies the dimension along which feature descriptor lies.

num_nearest: scalar. optional. default: 1.

Specifies the number of nearest neighbors to find.

Returns
(location, distance): tuple of af.Array

location and distances of closest matches.

arrayfire.vision.harris(image, max_corners=500, min_response=100000.0, sigma=1.0, block_size=0, k_thr=0.04)[source]

Harris corner detector.

Parameters
imageaf.Array

A 2D array specifying an image.

max_cornersscalar. optional. default: 500.

Specifies the maximum number of corners to be calculated.

min_responsescalar. optional. default: 1E5

Specifies the cutoff score for a corner to be considered

sigmascalar. optional. default: 1.0
  • Specifies the standard deviation of a circular window.

  • Only used when block_size == 0. Must be >= 0.5 and <= 5.0.

block_sizescalar. optional. default: 0

Specifies the window size.

k_thrscalar. optional. default: 0.04

Harris constant. must be >= 0.01

Returns
featuresaf.Features()

Contains the location and score. Orientation and size are not computed.

arrayfire.vision.homography(x_src, y_src, x_dst, y_dst, htype=<HOMOGRAPHY.RANSAC: 0>, ransac_threshold=3.0, iters=1000, out_type=<Dtype.f32: 0>)[source]

Homography estimation

Parameters
x_srcaf.Array

A list of x co-ordinates of the source points.

y_srcaf.Array

A list of y co-ordinates of the source points.

x_dstaf.Array

A list of x co-ordinates of the destination points.

y_dstaf.Array

A list of y co-ordinates of the destination points.

htypeoptional: af.HOMOGRAPHY. Default: HOMOGRAPHY.RANSAC
htype can be one of
  • HOMOGRAPHY.RANSAC: RANdom SAmple Consensus will be used to evaluate quality.

  • HOMOGRAPHY.LMEDS : Least MEDian of Squares is used to evaluate quality.

ransac_thresholdoptional: scalar. Default: 3.0

If htype is HOMOGRAPHY.RANSAC, it specifies the L2-distance threshold for inliers.

out_typeoptional. af.Dtype. Default: Dtype.f32.

Specifies the output data type.

Returns
(H, inliers)A tuple of (af.Array, integer)
arrayfire.vision.match_template(image, template, match_type=<MATCH.SAD: 0>)[source]

Find the closest match of a template in an image.

Parameters
imageaf.Array

A multi dimensional array specifying an image or batch of images.

templateaf.Array

A multi dimensional array specifying a template or batch of templates.

match_type: optional: af.MATCH. default: af.MATCH.SAD

Specifies the match function metric.

Returns
outaf.Array

An array containing the score of the match at each pixel.

arrayfire.vision.nearest_neighbour(query, database, dim=0, num_nearest=1, match_type=<MATCH.SSD: 3>)[source]

Nearest Neighbour matcher.

Parameters
queryaf.Array

A query feature descriptor

databaseaf.Array

A multi dimensional array containing the feature descriptor database.

dimscalar. optional. default: 0.

Specifies the dimension along which feature descriptor lies.

num_nearest: scalar. optional. default: 1.

Specifies the number of nearest neighbors to find.

match_type: optional: af.MATCH. default: af.MATCH.SSD

Specifies the match function metric.

Returns
(location, distance): tuple of af.Array

location and distances of closest matches.

arrayfire.vision.orb(image, threshold=20.0, max_features=400, scale=1.5, num_levels=4, blur_image=False)[source]

ORB Feature descriptor.

Parameters
imageaf.Array

A 2D array representing an image.

thresholdscalar. optional. default: 20.0.

FAST threshold for which a pixel of the circle around a central pixel is consdered.

max_featuresscalar. optional. default: 400.

Specifies the maximum number of features to be considered.

scalescalar. optional. default: 1.5.

Specifies the factor by which images are down scaled at each level.

num_levlesscalar. optional. default: 4.

Specifies the number of levels used in the image pyramid.

blur_imageBoolean. optional. default: False.

Flag specifying if the input has to be blurred before computing descriptors. A gaussian filter with sigma = 2 is applied if True.

Returns
(features, descriptor)tuple of (af.Features(), af.Array)
  • descriptor is an af.Array of size N x 8

arrayfire.vision.sift(image, num_layers=3, contrast_threshold=0.04, edge_threshold=10.0, initial_sigma=1.6, double_input=True, intensity_scale=0.00390625, feature_ratio=0.05)[source]

SIFT feature detector and descriptor.

Parameters
imageaf.Array

A 2D array representing an image

num_layersoptional: integer. Default: 3

Number of layers per octave. The number of octaves is calculated internally.

contrast_thresholdoptional: float. Default: 0.04

Threshold used to filter out features that have low contrast.

edge_thresholdoptional: float. Default: 10.0

Threshold used to filter out features that are too edge-like.

initial_sigmaoptional: float. Default: 1.6

The sigma value used to filter the input image at the first octave.

double_inputoptional: bool. Default: True

If True, the input image will be scaled to double the size for the first octave.

intensity_scaleoptional: float. Default: 1.0/255

The inverse of the difference between maximum and minimum intensity values.

feature_ratiooptional: float. Default: 0.05

Specifies the maximum number of features to detect as a ratio of image pixels.

Returns
(features, descriptor)tuple of (af.Features(), af.Array)
  • descriptor is an af.Array of size N x 128

arrayfire.vision.susan(image, radius=3, diff_thr=32, geom_thr=10, feature_ratio=0.05, edge=3)[source]

SUSAN corner detector.

Parameters
imageaf.Array

A 2D array specifying an image.

radiusscalar. optional. default: 500.

Specifies the radius of each pixel neighborhood.

diff_thrscalar. optional. default: 1E5

Specifies the intensity difference threshold.

geom_thrscalar. optional. default: 1.0

Specifies the geometric threshold.

feature_ratioscalar. optional. default: 0.05 (5%)

Specifies the ratio of corners found to number of pixels.

edgescalar. optional. default: 3

Specifies the number of edge rows and columns that are ignored.

Returns
featuresaf.Features()

Contains the location and score. Orientation and size are not computed.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4