A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://accord-framework.net/docs/html/T_Accord_MachineLearning_Boosting_Learners_DecisionStump.htm below:

DecisionStump Class

Simple classifier that based on decision margins that are perpendicular to one of the space dimensions.

Inheritance Hierarchy Namespace:  Accord.MachineLearning.Boosting.Learners
Assembly:

Accord.MachineLearning (in Accord.MachineLearning.dll) Version: 3.8.0

Syntax
[SerializableAttribute]
public class DecisionStump : BinaryClassifierBase<double[]>
<SerializableAttribute>
Public Class DecisionStump
	Inherits BinaryClassifierBase(Of Double())
Request Example View Source

The DecisionStump type exposes the following members.

Constructors Properties Methods   Name Description Compute Obsolete.

Computes the output class label for a given input.

Decide(TInput)

Computes class-label decisions for a given set of input vectors.

(Inherited from ClassifierBaseTInput, TClasses.) Decide(Double)

Computes a class-label decision for a given input.

(Overrides ClassifierBaseTInput, TClassesDecide(TInput).) Decide(TInput, Boolean)

Computes class-label decisions for the given input.

(Inherited from BinaryClassifierBaseTInput.) Decide(TInput, TClasses)

Computes a class-label decision for a given input.

(Inherited from ClassifierBaseTInput, TClasses.) Equals

Determines whether the specified object is equal to the current object.

(Inherited from Object.) Finalize

Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.

(Inherited from Object.) GetHashCode

Serves as the default hash function.

(Inherited from Object.) GetType

Gets the Type of the current instance.

(Inherited from Object.) Learn Obsolete.

Teaches the stump classifier to recognize the class labels of the given input samples.

MemberwiseClone

Creates a shallow copy of the current Object.

(Inherited from Object.) ToMulticlass

Views this instance as a multi-class classifier, giving access to more advanced methods, such as the prediction of integer labels.

(Inherited from BinaryClassifierBaseTInput.) ToMultilabel

Views this instance as a multi-label classifier, giving access to more advanced methods, such as the prediction of one-hot vectors.

(Inherited from BinaryClassifierBaseTInput.) ToString

Returns a string that represents the current object.

(Inherited from Object.) Transform(TInput)

Applies the transformation to an input, producing an associated output.

(Inherited from ClassifierBaseTInput, TClasses.) Transform(TInput)

Applies the transformation to a set of input vectors, producing an associated set of output vectors.

(Inherited from TransformBaseTInput, TOutput.) Transform(TInput, Boolean)

Applies the transformation to an input, producing an associated output.

(Inherited from BinaryClassifierBaseTInput.) Transform(TInput, Double)

Applies the transformation to an input, producing an associated output.

(Inherited from BinaryClassifierBaseTInput.) Transform(TInput, Int32)

Applies the transformation to an input, producing an associated output.

(Inherited from BinaryClassifierBaseTInput.) Transform(TInput, Boolean)

Applies the transformation to an input, producing an associated output.

(Inherited from BinaryClassifierBaseTInput.) Transform(TInput, Double)

Applies the transformation to an input, producing an associated output.

(Inherited from BinaryClassifierBaseTInput.) Transform(TInput, Double)

Applies the transformation to an input, producing an associated output.

(Inherited from BinaryClassifierBaseTInput.) Transform(TInput, Int32)

Applies the transformation to an input, producing an associated output.

(Inherited from BinaryClassifierBaseTInput.) Transform(TInput, Int32)

Applies the transformation to an input, producing an associated output.

(Inherited from BinaryClassifierBaseTInput.) Transform(TInput, TClasses)

Applies the transformation to an input, producing an associated output.

(Inherited from ClassifierBaseTInput, TClasses.) Top Extension Methods   Name Description HasMethod

Checks whether an object implements a method with the given name.

(Defined by ExtensionMethods.) IsEqual

Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices.

(Defined by Matrix.) To(Type) Overloaded.

Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.

(Defined by ExtensionMethods.) ToT Overloaded.

Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.

(Defined by ExtensionMethods.) Top Examples

The DecisionStump classifier is mostly intended to be used as a weak classifier in the context of an AdaBoostTModel learning algorithm. Please refer to the AdaBoostTModel class for more examples on using the classifier in this scenario. A simple example is shown below:

double[][] inputs =
{
    new double[] {  10, 42 },
    new double[] { 162, 96 },
    new double[] { 125, 20 },
    new double[] {  96,  6 },
    new double[] {   2, 73 },
    new double[] {  52, 51 },
    new double[] {  71, 49 },
};


bool[] outputs =
{
    false, false, true, true, false, false, true
};


var learner = new AdaBoost<DecisionStump>()
{
    Learner = (p) => new ThresholdLearning(),

    
    MaxIterations = 5,
    Tolerance = 1e-3
};


Boost<DecisionStump> classifier = learner.Learn(inputs, outputs);


ConfusionMatrix cm = ConfusionMatrix.Estimate(classifier, inputs, outputs);

double error = cm.Error;  
double acc = cm.Accuracy; 
double kappa = cm.Kappa;  


bool y = classifier.Decide(inputs[0]); 

It is also possible to use the DecisionStump as a standalone classifier through the ThresholdLearning algorithm. An example is given below:

double[][] inputs =
{
    new double[] {  10, 42 },
    new double[] { 162, 96 },
    new double[] { 125, 20 },
    new double[] {  96,  6 },
    new double[] {   2, 73 },
    new double[] {  52, 51 },
    new double[] {  71, 49 },
};


bool[] outputs =
{
    false, false, true, true, false, false, true
};


var teacher = new ThresholdLearning();


DecisionStump classifier = teacher.Learn(inputs, outputs);


var cm = ConfusionMatrix.Estimate(classifier, inputs, outputs);

double error = cm.Error; 


bool y = classifier.Decide(new double[] { 71, 48 }); 
See Also

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4