double[][] inputs = { new double[] { 0, 1, 1, 0 }, new double[] { 0, 1, 0, 0 }, new double[] { 0, 0, 1, 0 }, new double[] { 0, 1, 1, 0 }, new double[] { 0, 1, 0, 0 }, new double[] { 1, 0, 0, 0 }, new double[] { 1, 0, 0, 0 }, new double[] { 1, 0, 0, 1 }, new double[] { 0, 0, 0, 1 }, new double[] { 0, 0, 0, 1 }, new double[] { 1, 1, 1, 1 }, new double[] { 1, 0, 1, 1 }, new double[] { 1, 1, 0, 1 }, new double[] { 0, 1, 1, 1 }, new double[] { 1, 1, 1, 1 }, }; int[] outputs = { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, }; var teacher = new NaiveBayesLearning<NormalDistribution, NormalOptions>(); teacher.Options.InnerOption.Regularization = 1e-5; NaiveBayes<NormalDistribution> bayes = teacher.Learn(inputs, outputs); int[] predicted = bayes.Decide(inputs); double error = new ZeroOneLoss(outputs).Loss(predicted); int answer = bayes.Decide(new double[] { 1, 0, 0, 1 });
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4